On Auslander-Type Conditions of Modules

نویسندگان

چکیده

For a left and right Noetherian ring $R$, we give some equivalent characterizations for $\_RR$ satisfying the Auslander condition in terms of flat (resp. injective) dimensions minimal injective coresolution resolution) $R$-modules. Furthermore, prove that an artin algebra $R$ condition, is Gorenstein if only subcategory consisting finitely generated modules contravariantly finite. As applications, get Auslander–Gorenstein rings Auslander-regular rings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proper Resolutions and Auslander-Type Conditions of Modules

We obtain some methods to construct a (strongly) proper resolution (resp. coproper coresolution) of one end term in a short exact sequence from that of the other two terms. By using this method, we prove that for a left and right Noetherian ring R, RR satisfies the Auslander condition if and only if so does every flat left R-module, if and only if the injective dimension of the ith term in a mi...

متن کامل

Auslander-type Conditions

Throughout this article, Λ is a left and right Noetherian ring (unless stated otherwise), modΛ is the category of finitely generated left Λ-modules and 0 → Λ → I0(Λ) → I1(Λ) → · · · → Ii(Λ) → · · · is the minimal injective resolution of Λ as a left Λ-module. For a module M ∈ mod Λ and a non-negative integer n, recall that the grade of M , denoted by gradeM , is said to be at least n if ExtΛ(M, ...

متن کامل

Auslander-type conditions and cotorsion theory

We study the properties of rings satisfying Auslander-type conditions. If an artin algebra Λ satisfies the Auslander condition (that is, Λ is an ∞-Gorenstein artin algebra), then we construct two kinds of subcategories which form functorially finite cotorsion theories. Noetherian rings satisfying ‘Auslander-type conditions’ on self-injective resolutions can be regarded as certain non-commutativ...

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

An Auslander-type Result for Gorenstein-projective Modules

An artin algebra A is said to be CM-finite if there are only finitely many, up to isomorphisms, indecomposable finitely generated Gorenstein-projective A-modules. We prove that for a Gorenstein artin algebra, it is CM-finite if and only if every its Gorenstein-projective module is a direct sum of finitely generated Gorenstein-projective modules. This is an analogue of Auslander’s theorem on alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of The Research Institute for Mathematical Sciences

سال: 2023

ISSN: ['1663-4926', '0034-5318']

DOI: https://doi.org/10.4171/prims/59-1-2